Assessing Competence of Broccoli Consumption on Inflammatory and Antioxidant Pathways in Restraint-Induced Models: Estimation in Rat Hippocampus and Prefrontal Cortex

نویسندگان

  • Leila Khalaj
  • Sara Chavoshi Nejad
  • Marzieh Mohammadi
  • Sadaf Sarraf Zadeh
  • Marieh Hossein Pour
  • Ghorbangol Ashabi
  • Fariba Khodagholi
  • Abolhassan Ahmadiani
چکیده

A growing body of evidence advocated the protective and therapeutic potential of natural compounds and phytochemicals used in diets against pathological conditions. Herein, the outcome of dietary whole broccoli consumption prior to restraint stress has been investigated in the hippocampus and prefrontal cortex of male rats, two important regions involved in the processing of responses to stressful events. Interestingly, a region-specific effect was detected regarding some of antioxidant defense system factors: nuclear factor erythroid-derived 2-related factor 2 (Nrf-2) antioxidant pathway, mitochondrial prosurvival proteins involved in mitochondrial biogenesis, and apoptotic cell death proteins. Dietary broccoli supplementation modulated the restraint-induced changes towards a consistent overall protection in the hippocampus. In the prefrontal cortex, however, despite activation of most of the protective factors, presumably as an attempt to save the system against the stress insult, some detrimental outcomes such as induced malate dehydrogenase (MDA) level and cleaved form of caspase-3 were detectable. Such diversity may be attributed in one hand to the different basic levels and/or availability of defensive mechanisms within the two studied cerebral regions, and on the other hand to the probable dose-dependent and hormetic effects of whole broccoli. More experiments are essential to demonstrate these assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density

Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...

متن کامل

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

P44: The Antioxidant Effect of Nanomicelle Curcumin in Bisphenol A-Induced Brain Toxicity Following Subacute Exposure in Rats

Bisphenol A (BPA) is used in the manufacture of polycarbonate plastics and epoxy resins; therefore, exposure to BPA is increasing every day. BPA has toxic effects on various human tissues. Curcumin, a yellow polyphenol, is the active turmeric ingredient. It is an efficacious and safe compound with multiple pharmacological activities including antioxidant, ant carcinogenic, ant proliferative, an...

متن کامل

Cinnamaldehyde improves methamphetamine-induced spatial learning and memory deficits and restores ERK signaling in the rat prefrontal cortex

Objective(s): Methamphetamine is a stimulant compound that penetrates readily into the central nervous system. Repeated exposure to methamphetamine leads to damage in the dopaminergic and serotonergic axons of selected brain regions. Previous studies showed that cinnamaldehyde improved memory impairment in animals. In the present study, we aimed to elucidate the effects of cinnamaldehyde on met...

متن کامل

Morin Hydrate ameliorates Chronic Restraint Stress-Induced Biochemical Disruption, Neuronal and Behavioral Dysfunctions in BALB/c Mice

Background: Morin hydrate (MH) is a bioflavonoid component of many fruits and vegetables. Our previous investigations demonstrated that MH confer neuroprotection in mouse models of acute restraint stress and sleep deprivation by attenuating hippocampal neuronal damage and enhancing memory. Based on these findings, our study investigated the role of MH in chronic stress-induced neuronal and bioc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013